

MANAGEMENT

RECEIVED:

05 March 2025

ACCEPTED:

20 May 2025

RELEASED:

20 June 2025

UDC 004.8:334.7:658.5

DOI 10.26661/2522-1566/2025-2/32-04

OPERATIONAL MANAGEMENT AND STRATEGIC SCENARIOS OF IMPLEMENTING ARTIFICIAL INTELLIGENCE IN ENTREPRENEURSHIP INFRASTRUCTURE ORGANIZATIONS

Dmytro Antoniuk*

Zaporizhzhia National University

Zaporizhzhia, Ukraine

ORCID 0000-0003-2910-0497

*Corresponding author email: oasdant@gmail.com

Abstract. The article examines the role of operational management in implementing various scenarios of artificial intelligence (AI) strategy adoption within entrepreneurship infrastructure organizations, such as chambers of commerce and industry, consulting firms, incubators, and government business support institutions. The study proposes a conceptual model that considers two key drivers: organizational readiness and the level of competitive pressure. The research methodology employs a matrix approach that identifies four AI implementation strategy scenarios.

According to the Trailblazers scenario, AI is implemented by entrepreneurship infrastructure organizations with high readiness and high competitive pressure, which focus on aggressive innovation and rapid scaling. Organizations with low readiness but high pressure, concentrating on reactive solutions to achieve “quick wins” follow the Fast followers strategy. Cautious adopters have high readiness but low competitive pressure, allowing them to gradually integrate AI using proven solutions. Explorers are organizations with low readiness and low pressure that conduct experiments to accumulate knowledge.

The research results demonstrate that the success of AI transformation largely depends on an organization's ability to adapt its operational strategy to its specific profile. Leading organizations (Trailblazers) require the creation of flexible teams and developed infrastructure, while catching-up organizations (Fast followers) can effectively use cloud AI services to quickly obtain results. For cautious adopters, risk management is a key aspect, and explorers focus on staff training and preparation for future changes.

The practical value of the research lies in developing a strategy classification that helps organizations clearly identify their current state and choose the optimal AI implementation path. The proposed model serves as a tool for managers seeking to effectively integrate AI into their organizations' operations while considering their readiness levels and competitive environments.

Keywords: entrepreneurship infrastructure organisations, operational management, artificial intelligence, digital transformation, business processes, organizational readiness, competitive pressure.

JEL Classification: O33, M15, L26.

INTRODUCTION

Artificial intelligence (AI) is rapidly becoming a strategic priority for businesses, especially in the service sector. Managers, given the strong attention of governments and businesses to these technologies, have high expectations for its transformational potential. Thus, according to an IFS survey (Fabris, 2024), about 84% of managers expect significant organizational benefits from the implementation of AI (in the form of product and service innovations, improved data availability, and cost savings). At the same time, the survey also found that 82% of respondents feel significant external pressure to adopt AI fast. However, expectations do not always match reality, as only 1% of companies believe that they have deeply integrated AI into daily operations and that this is providing significant results (Agility at scale, 2024). Studies also show that about 80% of AI projects fail to achieve their intended results, and almost 70% of initiatives do not go past the pilot stage. The reasons for this gap between expectations and results are probably not only the complexity of AI technologies, but also insufficient organizational readiness due to unclear goals, lack of mechanisms for implementing strategies, human resources issues, limited internal resources, etc.

This problem is especially relevant for service companies and, in particular, entrepreneurship infrastructure organizations, such as chambers of commerce and industry (CCI), incubators, accelerators, and consulting companies (Antoniuk, 2016). Such organizations simultaneously play the role of service providers and business partners, so they want to innovate to improve the efficiency of internal business processes and provide better and more modern services to startups and enterprises. At the same time, their level of technological maturity and competitive pressures can vary significantly. Some large consulting companies or big CCIs already have their own developed digital infrastructure (e.g., digital CCIs (Antoniuk, 2013)) and sufficient human resources, which allows them to be leaders in AI implementation. In contrast, small consulting companies or government agencies with limited resources and weaker competitive pressure are more cautious about innovation.

In such conditions, operational management can be a key element that combines strategic intentions for AI implementation with the practical implementation of these intentions in the organization's everyday activities. It covers the management of business processes and company resources to effectively create and deliver services, ensure quality and productivity. In the context of innovations, its tasks are to prepare business processes for changes and integrate new technologies into them, train staff, and scale successful solutions. The analysis shows that the implementation of AI in the activities of companies should be considered not just as a software purchase, but as a change in the operating model of the organization, which requires consistency with the strategy (Rohn, 2025).

LITERATURE REVIEW

In academic publications the AI implementation is discussed as a special form of innovation that follows the general patterns of technology diffusion but has its own specific factors. According to the classical theories of innovation, in particular Technology-Organization-Environment (TOE) model, the decision to adopt a new technology depends on three groups of factors: technological characteristics, organizational factors, and the external environment (Alsheibani et al., 2018). Organizational factors include resources and company characteristics, while environmental factors include competitive pressures, relationships with partners, regulatory requirements, etc. In the case of AI, researchers are increasingly focusing on organizational readiness and competitive pressure as the determinants of adoption. Organizational readiness for AI implementation is determined by a combination of preparatory conditions in the organization (IT infrastructure, staff competencies,

culture of innovation, management support) that create the basis for the successful implementation of AI initiatives (Agility at scale, 2024).

The second important factor is competitive pressure (or competitive positioning intensity). It describes an external impulse for an organization to innovate in order to maintain or enhance its competitiveness. Under competitive pressure, companies are more likely to agree to invest in new technologies for fear of losing market share or falling behind in terms of efficiency (Alsheibani et al., 2018). Empirical studies confirm that strong market pressure stimulates faster diffusion of innovations in the industry. For example, the IFS survey showed that 80% of managers noted that competitors' awareness of AI's potential pushed their own companies to accelerate the adoption of this technology (Fabris, 2024). Thus, high competition creates an environment in which delaying the adoption of AI can cost businesses a loss of position.

In the service sector, these factors have a specific impact. Service organizations are implementing AI to improve the quality and speed of service, personalize services, automate routine operations, and process large data sets. AI is most actively integrated into marketing and sales, product development, and customer service functions, while professional services (consulting, auditing, etc.) are seeing an increase in the use of AI to automate document preparation, data analysis, and workflow optimization (Rohn, 2025). Professional service providers are leading in the implementation of generative AI due to their high level of digitalization, access to structured data, innovative culture, and staff with developed digital skills. This allows them to quickly scale pilot solutions and gain real benefits from the technology. Instead, public sector organizations and traditional service industries (construction, public administration, healthcare) usually fall behind due to outdated business processes, IT systems, strict regulations, and a cautious organizational culture (Rohn, 2025).

Operational management is traditionally defined as an activity aimed at planning, organizing and controlling the processes of producing goods or providing services in order to achieve maximum efficiency (Volkov et al., 2012). It is aimed at ensuring that operations are aligned with the overall business strategy and that the organization adapts to a changing environment. The operational strategy forms a long-term vision of the development of the company's operational capabilities in accordance with the competitive strategy. When implementing innovations, such as AI, the operational strategy plays the role of a roadmap for the transformation of internal processes and structures.

The success of technological change depends largely on the ability of an organization to integrate innovations into existing operations or transform operating models to accommodate these innovations (Rohn, 2025). In the case of AI, this means the need to integrate algorithms, models, and digital solutions into everyday business processes. In other words, the task of operational management is to ensure smooth interaction between people, technology, and processes. Successful AI implementation is impossible without well formalized, optimized, and flexible processes that can be easily adapted to new technologies. Organizations with chaotic or inflexible processes run the risk of encountering resistance and disruption instead of the expected improvements. Experience shows that organizations that succeed in digital transformation usually have strong operational management, use Lean or Six Sigma methodologies, and implement AI in stages – through piloting, evaluation, and scaling. This approach allows not only minimizing risks but also gradually adapting staff to new roles, increasing trust in AI system recommendations, and increasing the accuracy of models (Rohn, 2025).

To summarize, the literature review demonstrates that the realization of AI potential in service organizations depends on two groups of factors: first, on the level of their internal readiness (resource, technological, process, cultural), and second, on external pressures and opportunities that dictate the required pace and scale of implementation. Operational management is the link between these factors, transforming strategic imperatives into practical actions.

Antoniuk, D. (2025). Operational management and strategic scenarios of implementing artificial intelligence in entrepreneurship infrastructure organizations. *Management and Entrepreneurship: Trends of Development*, 2(32), 62-71. <https://doi.org/10.26661/2522-1566/2025-2/32-04>

PAPER OBJECTIVE

The aim of the study is to develop a conceptual model of operational management to support the implementation of AI strategies in entrepreneurship infrastructure organizations, taking into account their organizational readiness and the level of competitive pressure, and to formulate practical recommendations for adapting the operational strategy depending on the strategic profile of the organization.

METHODOLOGY

This analytical study is based on an interdisciplinary literature review and expert opinions. A matrix approach is used to structure the results: a two-dimensional matrix (high/low readiness \times high/low pressure) is developed, which forms four quadrants of AI implementation strategies scenarios. Each quadrant is given a conventional name and its characteristics are formulated. As part of the description of each type of strategy, implementation scenarios are provided with an emphasis on how operational management and operational strategy contribute (or can contribute) to the successful implementation of AI.

The strategic model of the quadrants is based on two drivers (organizational readiness and the level of competitive pressure) identified on the basis of TOE theory and empirical studies of AI implementation. To characterize the four quadrants, examples from the practice of entrepreneurship infrastructure organizations (CCI, consulting companies of different sizes, incubators and state business development agencies) were analyzed. Data was collected by studying secondary sources: sectoral reports, case studies, and scientific publications covering the experience of AI implementation in these organizations. The obtained qualitative information was generalized to highlight the typical behavior of organizations in each quadrant.

RESULTS AND DISCUSSION

Based on two key drivers – organizational readiness and the urgency of competitive pressure – a matrix of strategic approaches to AI implementation is proposed (Fig. 1). The crossing of the axes in the proposed matrix forms four quadrants, each of which corresponds to a certain type of strategic behavior of an organization in the implementation of AI: Trailblazers (high readiness, high pressure), Fast followers (low readiness, high pressure), Cautious adopters (high readiness, low pressure), and Explorers (low readiness, low pressure). This model takes into account both the company's internal capabilities and external market requirements. These scenarios are analytical guidelines. In practice, entrepreneurship infrastructure organizations may be located between the quadrants or move from one type to another over time in reaction to the development of their capabilities or changes in the market situation. However, for the purposes of analysis, a clear separation helps to better understand the emphasis of the operational strategy in each case.

The Trailblazers category includes organizations that both have significant internal capacity to implement AI and are under strong competitive pressure to be the first to adopt new technologies. Such entrepreneurship infrastructure organizations are technologically advanced, have a strong IT infrastructure, have collected large amounts of data, and engaged AI experts. They recognize the strategic value of AI and are willing to invest significant resources in innovative AI projects in an effort to stay ahead of the competition. These organizations can be large CCI or business associations that are able to quickly integrate AI solutions to support decision-making (e.g., market trend forecasting systems for members) or to enhance customer experience (e.g., AI-powered chatbots for entrepreneurial advice). Or large international consulting companies that are market leaders implement AI tools to analyze customer data, generate reports, and develop recommendations in order to stay ahead of the competition in providing consulting services.

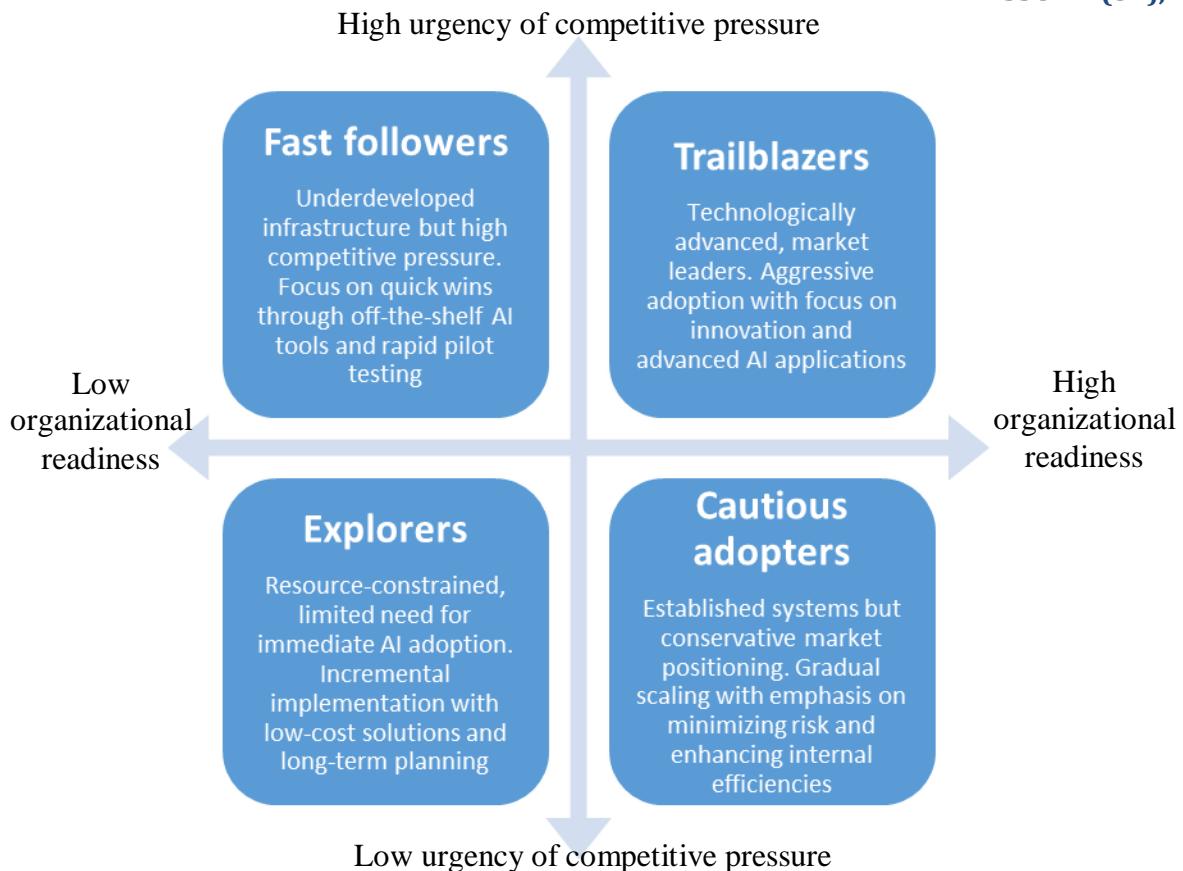


Figure 1. Scenarios of AI implementation in entrepreneurship infrastructure organizations

Source: created by author

In entrepreneurship infrastructure organizations that choose the Trailblazers strategy, operational management is focused on aggressive innovation and rapid scaling of successful solutions. Since the organization already has a high level of baseline readiness, the main challenge is to coordinate multiple AI initiatives and integrate them into a common enterprise operating system. Operational managers need to ensure that AI pilot projects move into the operational phase with minimal delays. To do this, it is advisable to create, for example, AI Centers of Excellence and flexible teams that combine data scientists, IT developers, and business analysts.

A lot of attention should be paid to change management (training staff in new skills of working with AI systems, adapting business processes to AI capabilities, and creating a culture of constant experimentation). The operational strategy of Trailblazer organizations prioritizes innovations: special resources are allocated for AI R&D, and ambitious KPIs are set (for example, the share of decisions made with the help of AI or time savings due to automation). At the same time, to ensure that innovations bring real benefits, the operational management of such organizations implements strict quality control of data and model results, builds a reliable infrastructure for ongoing deployment and updating of AI models, and develops standards for ethical and responsible use of AI.

Trailblazers are characterized by the ability to quickly scale successful solutions: if a pilot project has demonstrated effectiveness, the operational team quickly scales it up across all relevant divisions and markets, outpacing the competition. In terms of competitive dynamics, innovative leaders often set new standards in the industry themselves, thereby raising the bar for other players. Their operational management must be prepared not only to implement existing solutions but also to create new AI practices as they move down an uncharted path. This requires a high level of flexibility, leadership skills from managers, and a close connection between the upper levels of strategy and the frontline operations where AI is implemented.

Antoniuk, D. (2025). Operational management and strategic scenarios of implementing artificial intelligence in entrepreneurship infrastructure organizations. *Management and Entrepreneurship: Trends of Development*, 2(32), 62-71. <https://doi.org/10.26661/2522-1566/2025-2/32-04>

Entrepreneurship infrastructure organizations that are working under intense competitive pressure or high urgency of change, but have not yet reached full internal readiness for AI implementation, can be classified as Fast followers. They have an actual need to implement AI solutions (for fear of losing customers or losing out to an innovative competitor), but face resource, competence, or infrastructure limitations. This category usually includes smaller or regional companies that have to compete with larger players. In the consulting industry, an example is a medium-sized regional consulting organization that sees how large international consultants have begun to actively use AI (for analyzing reports, modeling markets, etc.) and realizes that to remain competitive, it must also implement similar tools. However, this organization does not have the same budget or expertise as the market leaders, so its approach is to “catch up quickly and economically”. Fast followers focus on quick, spot solutions that can be implemented even with limited availability to respond quickly to market challenges.

Operational management in the Fast followers quadrant has a double task. First, to quickly implement a few selected AI initiatives to get “quick wins” and close the most vulnerable competitive gaps. Secondly, to gradually increase organizational readiness for future, deeper AI implementations. The strategy of early adopters may be to use existing off-the-shelf AI solutions and services rather than develop their own. Operational managers are looking for relatively easy-to-implement tools: for example, a cloud-based machine learning service to automate some of the routine analytics, a platform with ready-made models for text or image processing, or a partnership with external AI solution providers. Thus, it is possible to quickly launch a pilot even without a large team of data scientists. The key role of operational management here is to select those areas of operations where AI implementation will have the maximum effect with minimal complexity. As internal maturity is low, management should avoid overly complex projects at the beginning – a failed implementation could undermine management and staff confidence in AI.

Fast follower organizations usually act on the principle of “catching up – matching – getting ahead”. At first, they try to close the gap with the leaders by importing technology (purchasing software, consulting on implementation). At this stage, operational managers pay a lot of attention to training staff in basic skills of working with new tools, reorganizing certain processes to support these tools, and setting up the primary infrastructure (for example, organizing data collection and storage in the cloud if it was not there before). An important task is to gain stakeholder support – to convince management and employees that AI implementation is feasible and useful. As practice shows, people's involvement can be a problem: in companies with lower readiness, staff may be afraid of AI or not understand its value. Therefore, operational management pays attention to change management: communicating quick successes, demonstrating improved performance.

Because Fast followers are still building readiness, their operational strategy is adaptive. Managers plan for the phased modernization of IT infrastructure and competence development: for example, they may include in the next year's budget the hiring of several data analysts or invest in training on the basics of AI platforms for existing employees. As the first projects are implemented, they accumulate internal knowledge and standardize approaches (for example, develop a process template for implementing AI pilots). By the time external pressures demand a larger-scale implementation (for example, competitors start offering personalized AI-based services on a massive scale), the organization will be better prepared than at the start.

Cautious adopters are organizations that have a relatively high level of organizational readiness for innovation (including digital transformation) but operate in an environment with low to moderate competitive pressure to adopt AI. In other words, they can adopt advanced technologies but are not forced to do so extremely quickly due to external circumstances. Such situations often occur in monopolized or regulated industries, as well as in organizations with a stable niche. In the area of entrepreneurship infrastructure, an example is a state or semi-state agency that has solid funding and IT capabilities (e.g., an entrepreneurship development agency subordinated to a ministry with its own IT department). It does not face direct competition, as it is the only player in

its niche, so there is no external pressure to implement AI. Another example is a large corporation that dominates the local service market (say, a utility provider) that has already gone through digitalization and has the resources to implement AI, but competition is limited, so it can afford to carefully weigh the risks and benefits of innovation. Cautious adopters are characterized by a balanced, gradual approach to AI: they seek to reap the benefits of technological progress but avoid hasty steps and experiments with high uncertainty.

In this quadrant, operational management plays the role of a keeper of stability and gradual improvements. High readiness means that the organization has well-established business processes, qualified staff, and may already have experience with successful IT projects. The management's task is to integrate AI in a way as to maintain the stability of operations and gradually gain benefits while minimizing the risks of disruption or failure. A cautious implementation strategy often involves thorough testing and piloting on a limited scale before deciding to implement on a large scale. For example, if such an organization decides to apply AI to improve internal efficiency, it may first launch an internal project to automate a single support process. Operational managers will carefully evaluate the results, and only after making sure that the solution is reliable will they extend it to other departments.

Cautious adopters avoid being the first to try out the latest raw technologies; instead, they like to adopt best practices that have already proven themselves. The operational management of such organizations actively monitors the experience of market leaders and scientific and practical recommendations. When a certain AI solution becomes mature and proves to be effective in other companies, cautious implementers include it in their arsenal.

Cautious adopters' operational strategy emphasizes internal efficiency and quality. They implement AI solutions that will help improve existing processes without changing the business model radically. As the staff is well trained, it is not uncommon for such organizations to create cross-functional teams where operational managers collaborate with IT specialists and process users to optimally integrate the AI tool into the work. They pay a lot of attention to risk management: for each AI implementation, potential risks are assessed, and backup plans are developed in case the AI system fails or the result is incorrect. In fact, Cautious adopters create built-in control mechanisms around AI solutions. This is in line with their general approach: start small, evaluate, learn, and only then scale.

From an operational management perspective, change management is less dramatic here than in the previous quadrants. Employees are often interested in new tools themselves, as the organization's culture supports improvement – but management always emphasizes that the innovations are intended to help, not radically change, their work. This keeps the transformation smooth.

Entrepreneurship infrastructure organizations that choose the Explorers strategy are in the early stages of both internal readiness for AI and do not feel much pressure from competitors or the environment to immediately adopt these technologies. These are usually small organizations or niche players with limited resources, or organizations working in a fairly stable environment where innovations are slow to be implemented. In the area of entrepreneurship infrastructure, an example might be a small specialized consulting company or agency that serves a particular niche industry or a few businesses. They may be aware of the potential benefits of AI, but they have neither an urgent need nor significant capabilities for large-scale AI projects. Nevertheless, as the name suggests, Explorers do not ignore AI; they take the position of researchers: they monitor the development of technologies, experiment on a small scale, and prepare for possible future implementation when both resources and need arise.

In this type of organization, operational management focuses on incremental improvements and knowledge building rather than on quick results or scale. With low pressure, they can afford to learn on the go. The basic strategy is to take small steps toward big things. This means that operational leaders initiate small projects or even training initiatives related to AI to understand how it works and prepare the ground for the future.

Antoniuk, D. (2025). Operational management and strategic scenarios of implementing artificial intelligence in entrepreneurship infrastructure organizations. *Management and Entrepreneurship: Trends of Development*, 2(32), 62-71. <https://doi.org/10.26661/2522-1566/2025-2/32-04>

Operational management in the Explorers quadrant should combine the functions of a manager and a mentor/coach: they should convince the team that learning new technologies is an investment in their development. Therefore, an important aspect is to increase staff awareness and competence in AI. Managers can organize small training sessions, seminars, send employees to external trainings, or encourage self-education. The goal is to create a basic level of knowledge so that when the opportunity/need to implement something more serious arises, the organization has people who understand what they are dealing with.

In terms of operational strategy, Explorers act rationally within their resources: they choose areas where small improvements will have a tangible effect. Often, these are internal processes where employees' time can be saved.

CONCLUSIONS

The four proposed scenarios of AI implementation strategies for entrepreneurship infrastructure organizations outline a wide range of possible approaches based on a combination of two key drivers: organizational readiness and urgency of competitive pressure. The strategic quadrant model allows not only to describe existing approaches, but also to offer an effective tool for diagnosing the current state of the organization and adjusting the operational strategy according to its profile. It is important to emphasize that the quadrants are not rigid categories: organizations can dynamically change their position in the matrix in response to the evolution of internal capabilities or a change in the market environment.

Each of the types of organizations according to these strategies demonstrates a characteristic approach to operational management: Trailblazers – maximally focus on innovation and high speed of change, relying on a developed operational base; Fast followers – act reactively, focusing efforts on quick successes and parallel development of readiness; Cautious adopters – choose careful, gradual integration of proven solutions, seeking to optimize internal efficiency and minimize risks; Explorers – carry out point experiments to build knowledge and form basic preparation for future large-scale implementation. Despite the differences in starting positions, the process of implementing AI in all organizations goes through similar stages: preparation, piloting, scaling and integration. The differences lie in the depth, speed and emphasis of each phase. To successfully pass these stages, the flexibility of the operational strategy, the ability to move from experiments to large-scale use of technologies and adapt to changes in the environment are critical.

The study showed that the strategic position of the organization in the matrix should serve not only as a description of the current state, but also as a guideline for development. Thus, for Fast follower organizations, a reasonable trajectory is to increase readiness with the prospect of transitioning to Trailblazer behavior, while Cautious adopters can proactively increase their innovative activity, focusing on the best market practices. Accordingly, the role of operational management is not only in the effective implementation of current initiatives, but also in the strategic support of the organization's development: forming a culture of readiness for change, creating conditions for rapid scaling of successful solutions, monitoring the external environment and timely adaptation of the strategy. Therefore, the proposed quadrant model not only systematizes existing approaches to implementing AI in the services sector, but also provides practical guidelines for operational managers on planning, organizing, and developing AI initiatives depending on the starting conditions and dynamics of the market environment.

REFERENCES

Agility at Scale. (2023). *AI Readiness Blueprint: Preparing Your Organization for AI Adoption*. <https://agility-at-scale.com/implementing/ai-readiness-blueprint/>

Alsheibani, S., Cheung, Y., Messom, Ch., (2018) Artificial Intelligence Adoption: AI-readiness at Firm-Level. *PACIS 2018 Proceedings*. 37. <https://aiselaisnet.org/pacis2018/37>

Antoniuk D. (2015). Development of the institutional infrastructure of entrepreneurship in the process of European integration: monograph. Lviv. SI "Institute of Regional Studies named after M.I. Dolishny NAS of Ukraine". 341 p. (in Ukrainian).

Antoniuk D.A. (2013). Organizational and methodological aspects of the creation of electronic chambers of commerce and industry in Ukraine. *Theoretical and practical aspects of economics and intellectual property*. No. 1 (3). P. 181-186. (in Ukrainian).

Fabris, P. (2024) Lack of organizational readiness is biggest hurdle to artificial intelligence adoption. *Building Design and Construction*. <https://www.bdcnetwork.com/home/news/55165850/lack-of-organizational-readiness-is-biggest-hurdle-to-artificial-intelligence-adoption>

Rohn, S. (2025). AI Adoption by Sector: Who's Leading and Lagging? *Whatfix Blog*. <https://whatfix.com/blog/ai-adoption-by-sector/#:~:text=,to%20duplicated%20efforts%2C%20inefficiencies%2C%20and>

Volkov, V.P., Antoniuk, D. A., Bikulov, D. T., Antoniuk, K. I. (2012). Operational Management in Production and Services: Textbook. Zaporizhzhia. Zaporizhzhia National University. 244 p. (in Ukrainian).

ОПЕРАЦІЙНИЙ МЕНЕДЖМЕНТ І СТРАТЕГІЧНІ СЦЕНАРІЇ ВПРОВАДЖЕННЯ ШТУЧНОГО ІНТЕЛЕКТУ В ОРГАНІЗАЦІЯХ ІНФРАСТРУКТУРИ ПІДПРИЄМНИЦТВА

Антонюк Дмитро Анатолійович

д.е.н., професор

Запорізький національний університет

м. Запоріжжя, Україна

У статті досліджується роль операційного менеджменту у впровадженні різних сценаріїв впровадження стратегій штучного інтелекту (ШІ) в організаціях інфраструктури підприємництва, таких як торгово-промислові палати, консалтингові компанії, інкубатори та державні установи підтримки бізнесу. Дослідження пропонує концептуальну модель, яка враховує два ключові драйвери: організаційну готовність та рівень конкурентного тиску. Методологія дослідження використовує матричний підхід, який визначає чотири сценарії впровадження стратегій ШІ.

Відповідно до сценарію Trailblazers, ШІ впроваджують організації інфраструктури підприємництва з високою готовністю та високим конкурентним тиском, які орієнтовані на агресивні інновації та швидке масштабування. Організації з низькою готовністю, але високим тиском, що зосереджені на реактивних рішеннях для досягнення «швидких перемог», дотримуються стратегії Fast followers. Cautious adopters мають високу готовність, але низький конкурентний тиск, що дозволяє їм поступово інтегрувати ШІ, використовуючи перевірені рішення. Explorers – це організації з низькою готовністю та низьким тиском, які проводять експерименти для накопичення знань.

Результати дослідження демонструють, що успіх трансформації із впровадження ШІ значною мірою залежить від здатності організації адаптувати свою операційну стратегію до власного профілю. Організації-лідери (Trailblazers) вимагають створення гнучких команд та розвиненої інфраструктури, тоді як організації, що наздоганяють (Fast followers), можуть ефективно використовувати хмарні сервіси ШІ для швидкого отримання результатів. Для обережних адаптерів (Cautious adopters) ключовим аспектом є управління ризиками, а дослідники (Explorers) зосереджуються на навчанні персоналу та підготовці до майбутніх змін.

Antoniuk, D. (2025). Operational management and strategic scenarios of implementing artificial intelligence in entrepreneurship infrastructure organizations. *Management and Entrepreneurship: Trends of Development*, 2(32), 62-71. <https://doi.org/10.26661/2522-1566/2025-2/32-04>

Практична цінність дослідження полягає в розробці класифікації стратегій, яка допомагає організаціям чітко визначити свій поточний стан та обрати оптимальний шлях впровадження ІІ. Запропонована модель слугує інструментом для менеджерів, які прагнуть ефективно інтегрувати ІІ в операційну діяльність своїх організацій з урахуванням рівня їхньої готовності та конкурентного середовища.

Ключові слова: організацій інфраструктури підприємництва, операційний менеджмент, штучний інтелект, цифрова трансформація, бізнес-процеси, організаційна готовність, конкурентний тиск